This work created a fireproof sandwich structure in which the face sheets were made of expanded vermiculite and expanded perlite‐filled geopolymer composites and embedded basalt fiber mats and the core material was rock wool in designing the lightweight and cost‐effective fire‐resistant structure for steel bridges with excellent retardant and heat‐insulating performance. The effects of adding 5%, 10%, 15%, and 20% expanded vermiculite and expanded perlite to the geopolymer on mechanical properties and the thermal conductivity were investigated to obtain the optimized material mixtures for preparing the face‐sheets material of the sandwich panel. Then, the fireproof sandwich structures were fabricated and exposed to 800°C for 3 h to study the structural integrity, backfire side temperature, and mass loss ratio. The results indicated that adding 10 wt% expanded vermiculite and 10 wt% expanded perlite to the geopolymer achieved the retention of compressive strength of 66.5% after being exposed to 800°C, and the geopolymer mixtures showed a low thermal conductivity of 0.1942 W/(mK). The TOPSIS evaluation analysis reveals that the proposed fireproof sandwich panel had the highest integrated performance considering the structural weight, insulation properties, and cost. The findings of this work may provide some insights into fireproof and insulating applications in bridge engineering.