The present study addresses the enhancement of fracture toughness of martensitic stainless steel (MSS) spot welds by utilizing through electroplating of Ni on MSS sheets. The equilibrium and non-equilibrium solidification modelling showed that by Ni coating with 50 μm thick on 1.5 mm thick MSSs, the solidification mode changes from δ-ferrite to γ-austenite, leading to a weld nugget (WN) dominated by austenite grains. Moreover, electron backscatter diffraction (EBSD) and electron probe microanalysis (EPMA) showed that the other phases (martensite, δ-ferrite) appeared in band areas of WN owing to incomplete mixing of MSS and the Ni-coating. The tough microstructure in the Ni-coated MSS spot welds provided superior mechanical properties compared to non-coated welds, both in cross-tension (CT) and tensile-shear (TS) tests. Notably, the TS and CT strengths of the Ni-coated MSS spot welds showed a remarkable increase of 57% and 127%, respectively, in comparison to the conventional bare MSS spot welds. Furthermore, in terms of failure energy, the Ni-coated MSS spot welds demonstrated a substantial enhancement of 296% in TS and 520% in CT, when compared to their non-coated counterparts. This research study showcased the effectiveness of Ni electroplating as an industrial method for improving the spot weldability of MSSs.