Mg-Zn-Sn-based alloys are widely used in the industrial field because of their low-cost, high-strength and heat-resistant characteristics. However, their application in the biomedical field has been rarely reported. In the present study, biodegradable Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys were fabricated. Their microstructure, surface characteristics, mechanical properties and bio-corrosion properties were carried out using an optical microscope (OM), X-ray diffraction (XRD), electron microscopy (SEM), mechanical testing, electrochemical and immersion test. The cell viability and morphology were studied by cell counting kit-8 (CCK-8) assay, live/dead cell assay, confocal laser scanning microscopy (CLSM) and SEM. The osteogenic activity was systematically investigated by alkaline phosphatase (ALP) assay, Alizarin Red S (ARS) staining, immunofluorescence staining and quantitative real time-polymerase chain reaction (qRT-PCR). The results showed that a small amount of strontium (Sr) (0.2 wt.%) significantly enhanced the corrosion resistance of the Mg-1Zn-1Sn alloy by grain refinement and decreasing the corrosion current density. Meanwhile, the mechanical properties were also improved via the second phase strengthening. Both Mg-1Zn-1Sn and Mg-1Zn-1Sn-0.2Sr alloys showed excellent biocompatibility, significantly promoted cell proliferation, adhesion and spreading. Particularly, significant increases in ALP activity, ARS staining, type I collagen (COL-I) expression as well as the expressions of three osteogenesis-related genes (runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (Bglap)) were observed for the Mg-1Zn-1Sn-0.2Sr group. In summary, this study demonstrated that Mg-Zn-Sn-based alloy has great application potential in orthopedics and Sr is an ideal alloying element of Mg-Zn-Sn-based alloy, which optimizes its corrosion resistance, mechanical properties and osteoinductive activity.