Steel slag is the waste slag generated after steel smelting, which has cementitious activity. However, untreated steel slag can damage the integrity of steel slag concrete due to its harmful expansion. This study prepared porous aggregates by mixing powdered steel slag, fly ash, and cement and carbonated them with CO2 under high pressure conditions (0.2 MPa). The effect of carbonation on the performance of steel slag aggregate was studied using volume stability and crushing value. The effect of different carbonation conditions on the products was studied using X-ray diffraction (XRD) and thermogravimetric (TG) analyses, and the carbon sequestration efficiency of steel slag under different treatment methods was quantitatively evaluated. The research results indicate that untreated steel slag was almost completely destroyed and lost its strength after autoclave curing. With the increase in temperature and carbonation time, the performance of steel slag aggregate gradually improved and the pulverization rate, expansion rate, and crushing value gradually decreased. According to the experimental results of XRD and TG, it was found that the reaction between f-CaO (free CaO) and CO2 in steel slag generated CaCO3, filling the pores inside the aggregate, which was the internal reason for the improvement of aggregate performance. After comparison, the best carbonation method was maintained at 55 °C for 72 h. After carbonation, the steel slag aggregate had a pulverization rate of 2.4%, an expansion rate of 0.23%, a crushing value of 23%, and a carbon sequestration efficiency of 11.27% per unit weight of aggregate.