In order to further improve the oxidation resistance of SiC-coated C/C composites used in extreme environments, TaSi2 coatings were deposited on the surfaces of SiC-coated C/C composites by supersonic air plasma spraying (SAPS) with different spraying power parameters, under other fixed parameter (gas flow, power feed rate, spraying distance and nozzle diameter) conditions. The micro-structures and phase characteristics of the TaSi2 coatings prepared with the four kinds of spraying powers (40 kW, 45 kW, 50 kW and 55 kW) were analyzed. Also, the inter-facial bonding strengths and fracture modes between the four TaSi2 coatings and the SiC coating were studied. The results showed that with an increase in the spraying power, the morphologies of the TaSi2 coatings appeared from loose to dense to loose. When the spraying power was 50 kW, the deposition rate reached a maximum of 39.8%. The TaSi2 coating presented an excellent micro-structure without obvious pores and microcracks, and its inter-facial bonding strength was 15.3 ± 2.3 N. Meanwhile, the fracture surface of the sample exhibited a brittle characteristic.