In the present study, the effects of SiC nanowires (SiCnws) with diameters of 100 nm, 250 nm and 450 nm on the microstructure and mechanical behavior of 20 vol.% SiCnws/6061Al composites prepared by pressure infiltration were studied. It was found that the interface between SiCnws and Al matrix was well bonded, and no interface product was found. The thicker SiCnws are beneficial to improve the density. In addition, the bamboo-like and bone-like morphologies of SiCnws produce a strong interlocking effect between SiCnws and Al, which helps to improve the strength and plasticity of the material. The tensile strength of the composite prepared by SiCnws with a diameter of 450 nm reached 544 MPa. With a decrease in the diameter of SiCnws, the strengthening effect of SiCnws increases. The yield strength of SiCnws/6061Al composites prepared by 100 nm is 13.4% and 28.5% higher than that of 250 nm and 450 nm, respectively. This shows that, in nano-reinforced composites, the small-size reinforcement has an excellent improvement effect on the properties of the composites. This result has a guiding effect on the subsequent composite structure design.