Microtia has severe physical and psychological impacts on patients, and auricular reconstruction offers improved esthetics and function, alleviating psychological issues. Microtia is a congenital disease caused by a multifactorial interaction of environmental and genetic factors, with complex clinical manifestations. Classification assessment aids in determining treatment strategies. Auricular reconstruction is the primary treatment for severe microtia, focusing on the selection of auricular scaffold materials, the construction of auricular morphology, and skin and soft tissue scaffold coverage. Autologous rib cartilage and synthetic materials are both used as scaffold materials for auricular reconstruction, each with advantages and disadvantages. Methods for achieving skin and soft tissue scaffold coverage have been developed to include nonexpansion and expansion techniques. In recent years, the application of digital auxiliary technology such as finite element analysis has helped optimize surgical outcomes and reduce complications. Tissue-engineered cartilage scaffolds and 3-dimensional bioprinting technology have rapidly advanced in the field of ear reconstruction. This article discusses the prevalence and classification of microtia, the selection of auricular scaffolds, the evolution of surgical methods, and the current applications of digital auxiliary technology in ear reconstruction, with the aim of providing clinical physicians with a reference for individualized ear reconstruction surgery. The focus of this work is on the current applications and challenges of tissue engineering and 3-dimensional bioprinting technology in the field of ear reconstruction, as well as future prospects.