Skeletal muscle is made from multinuclear myofiber, where myonuclei are positioned at the periphery or clustered below neuromuscular junctions (NMJs). While mispositioned myonuclei are the hallmark of numerous muscular diseases, the molecular machinery maintaining myonuclei positioning in mature muscle is still unknown. Here, we identified microtubule-associated protein MACF1 as an evolutionary conserved regulator of myonuclei positioning, in vitro and in vivo, controlling the âmicrotubule codeâ and stabilizing the microtubule dynamics during myofibers maturation, preferentially at NMJs. Specifically, MACF1 governs myonuclei motion, mitochondria positioning and structure and acetylcholine receptors (AChRs) clustering. Macf1-KO in young and adult mice decreases muscle excitability and causes evolutionary myonuclei positioning alterations in adult mice, paralleled with high mitochondria content and improved resistance to fatigue. We present MACF1 as a primary actor of the maintenance of synaptic myonuclei and AChRs clustering, peripheral myonuclei positioning and mitochondria organization through the control of microtubule network dynamics in muscle fibers.