Rotman lenses are the beguiling devices used by the beamforming networks (BFNs). These lenses are generally used in the radar surveillance systems to see targets in multiple directions due to its multibeam capability without physically moving the antenna system. Now a days these lenses are being integrated into many radars and electronic warfare systems around the world. The antenna should be capable of producing multiple beams which can be steered without changing the orientation of the antenna. Microwave lenses are the one who support low-phase error, wideband, and wide-angle scanning. They are the true time delay (TTD) devices producing frequency independent beam steering. The emerging printed lenses in recent years have facilitated the advancement of designing high performance but low-profile, light-weight, and small-size and networks (BFNs). This paper will review and analyze various design concepts used over the years to improve the scanning capability of the lens developed by various researchers.