The antibacterial characteristics of graphene oxide (GO-SB) nano-sheets generated by charring sugarcane bagasse (SB) are described in this study. The antibacterial capability of GO-SB was improved when it was grafted with ethyl cellulose (EC) and polyvinyl alcohol (PVA) to form GO-SB/EC/PVA hydrogels. Characterization of GO-SB nanosheets and GO-SB/EC/PVA hydrogels was accomplished by using FTIR, SEM, XRD, and thermal studies. The antimicrobial activity was carried out against Gram positive bacteria [Micrococcus leutus & Staphylococcus aureus], Gram negative bacteria [Escherichia coli, Pseudomonas aeruginosa] and pathogenic fungal yeast [Candida albicans] applying the disc diffusion method. The disc diffusion method results showed that the improved GO-SB/EC/PVA exhibited a reasonable level of antimicrobial capability against Micrococcus leutus, demonstrating that the antimicrobial improvement of GO-SB was more effective in the GO-SB/EC/PVA hydrogels by increasing the inhibition zone of Gram-positive bacteria, Micrococcus leutus from (13.0 to 16.0 mm).
Graphical abstract