The reaction mechanism of area-selective atomic layer deposition (AS-ALD) of AlO thin films using self-assembled monolayers (SAMs) was systematically investigated by theoretical and experimental studies. Trimethylaluminum (TMA) and HO were used as the precursor and oxidant, respectively, with octadecylphosphonic acid (ODPA) as an SAM to block AlO film formation. However, AlO layers began to form on the ODPA SAMs after several cycles, despite reports that CH-terminated SAMs cannot react with TMA. We showed that TMA does not react chemically with the SAM but is physically adsorbed, acting as a nucleation site for AlO film growth. Moreover, the amount of physisorbed TMA was affected by the partial pressure. By controlling it, we developed a new AS-ALD AlO process with high selectivity, which produces films of ∼60 nm thickness over 370 cycles. The successful deposition of AlO thin film patterns using this process is a breakthrough technique in the field of nanotechnology.