Hydropower plants are experiencing huge revenue losses due to the failure of hydro turbines caused by cavitation. Surface modification could be a feasible solution to tackle this problem. Microwave processing of metallic materials to coat/clad has gained popularity in recent years. In the current study, microwave exposure time by analyzing susceptor temperature is optimized to get sound clads. Nickel-based and Cr3C2-reinforced clad on SS-316 substrate is developed for cavitation erosion resistance. The clads have been developed in a domestic microwave oven of 2.45 GHz and 900 W. The Ni + 30% Cr3C2 developed clad has been characterized through various standard mechanical and metallurgical techniques like X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, Vicker’s micro-hardness, porosity measurement, and flexural study. The presence of various carbide and intermetallic phases Cr2Ni3, Cr7C3, CrSi, SiO2, and FeNi3 is confirmed from the X-ray diffraction pattern. The distribution of hard carbide phases into soft matrix is confirmed from the microstructural investigation. Vicker’s microhardness study confirms the enhanced average microhardness of the clad region by 2.5 times of the substrate. The analysis of porosity shows significantly less (0.98%) porosity. The flexural study of developed clads by using three-point bending test is evaluated and flexural strength and deformation index values of developed clads of 814 ± 11.5 MPa and 2.29 × 10−4 mm N−1 respectively are observed.