Abstract. Numerical models predict that discharge from the polar ice sheets will become the largest contributor to sea level rise over the coming centuries. However, the predicted amount of ice discharge and associated thinning depends on how well ice sheet models reproduce glaciological processes, such as ice flow in regions of large topographic relief, where ice flows around bedrock summits (i.e. nunataks) and through outlet glaciers. The ability of ice sheet models to capture long-term ice loss is best tested by comparing model simulations against geological data. A benchmark for such models is ice surface elevation change, which has been constrained empirically at nunataks and along margins of outlet glaciers using cosmogenic exposure dating. However, the usefulness of this approach in quantifying ice sheet thinning relies on how well such records represent changes in regional ice surface elevation. Here we examine how ice surface elevations respond to the presence of obstacles that create large topographic relief by modeling ice flow around and between idealised nunataks during periods of imposed ice sheet thinning. We found that, for realistic Antarctic conditions, a single nunatak could exert an impact on ice thickness over 20 km away from its summit, with its most prominent effect being a local increase (decrease) of the ice surface elevation of hundreds of metres upstream (downstream) of the obstacle. A direct consequence of this differential surface response for cosmogenic exposure dating was a delay in the time of bedrock exposure upstream relative to downstream of a nunatak. A nunatak elongated transverse to ice flow, with a wide subglacial continuation, was able to increase ice retention and therefore impose steeper ice surface gradients, while efficient ice drainage through outlet glaciers alleviated the differential response. Such differences, however, are not typically captured by continent-wide ice sheet models due to their coarse grid resolutions. This appears to be a key reason why models overestimate ice-sheet surface elevations and underestimate the pace of ice sheet melt contributing to sea level rise compared to empirical reconstructions. We conclude that a model grid refinement over complex topography and information about sample position relative to ice flow near the nunatak are necessary to improve data-model comparisons of ice surface elevation, and therefore the ability of models to simulate ice discharge in regions of large topographic relief.