We have developed a compact broadband infrared imaging Fourier transform spectrometer, referred to as the 2D FT-IR, employing common path wavefront division phase-shift interferometry. The system comprises a 3-reflector point-topoint optical setup with overlapping paths, incorporating two free-form mirrors and a pair of 20 mm high and 40 mm wide planar mirrors. Initially, we establish a one-dimensional multi-slit object plane with spacing tailored to match the FPA detector pixel size, effectively preventing destructive interference. Through precise optimization of the parameters of the two free-form mirrors (Mirror 1: 4th-order Zernike polynomial; Mirror 2: 6th-order Zernike polynomial), we achieve precise beam collimation, reflection through a phase shifter, and subsequent refocusing onto the FPA detector. Utilizing a commercial uncooled bolometer camera with a resolution of 640x480 pixels and a pixel size of 17μm, we attain optimal performance across the 4-20μm wavelength range, coupled with a generous 6mm diameter field of view. The spectrometer boasts a remarkable wavenumber resolution of 2.7 cm -1 , with R (λ=4μm) ≈ 1000, alongside a spatial resolution of 34μm.All components seamlessly fit within a 170x150x80 mm vacuum frame. The 2D FT-IR enables the acquisition of spectral maps post-image capture and offers a broad measurement wavelength range of 4-20 μm. After completion of development, we plan to employ it to study the generation mechanisms of cryogenically frozen organic matter simulating Titan's haze and to measure the low-temperature continuous spectral transmittance and refractive index of the GREX-PLUS spectroscopic components. Additionally, due to its high vibration resistance and compact design, we intend to deploy it as a spectrometer for compact satellites developed by JAXA. Lastly, it will serve as a pivotal test instrument for the PLANETS telescope, facilitating the evaluation of the telescope's resistance to atmospheric disturbances.