In the present work, we studied the interactions of three types of iron oxide nanoparticles (IONPs) with human serum albumin (HSA) by fluorescence and UV-Vis spectroscopy. The determined binding parameters of the reactions and the thermodynamic parameters, including ΔHo, ΔSo, and ΔGo indicated that electrostatic forces play a major role in the interaction of IONPs with HSA. These measurements indicate a fluorescent quenching mechanism based on IONPs-HSA static complex formation. Our study shows that the interaction between HSA and IONPs depends on the nanoparticle structure. The interaction between IONPs and HSA was found to be spontaneous, exothermic, and entropy-driven. HSA was shown to interact moderately with IONPs obtained with plant extracts of Uncaria tomentosa L. (IONP@UT) and Clinopodium vulgare L. (IONP@CV), and firmly with IONPs prepared with Ganoderma lingzhi (Reishi) extract (IONP@GL), via ground-state association. Analysis by modified Stern-Volmer approximation indicates that the quenching mechanism is static. Our study significantly improves our understanding of the mechanisms of interaction, distribution, and transport involved in the interaction between proteins and IONPs. It provides crucial insights into the functional perturbations of albumin binding capacity and the effects of IONPs on the stability and structural modifications of plasma carrier proteins.