Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Salvage radiation therapy (sRT) is often the sole curative option in patients with biochemical recurrence after radical prostatectomy. After sRT, we developed and validated a nomogram to predict freedom from biochemical failure. Objective This study aims to evaluate prostate-specific membrane antigen–positron emission tomography (PSMA-PET)–based sRT efficacy for postprostatectomy prostate-specific antigen (PSA) persistence or recurrence. Objectives include developing a random survival forest (RSF) model for predicting biochemical failure, comparing it with a Cox model, and assessing predictive accuracy over time. Multinational cohort data will validate the model’s performance, aiming to improve clinical management of recurrent prostate cancer. Methods This multicenter retrospective study collected data from 13 medical facilities across 5 countries: Germany, Cyprus, Australia, Italy, and Switzerland. A total of 1029 patients who underwent sRT following PSMA-PET–based assessment for PSA persistence or recurrence were included. Patients were treated between July 2013 and June 2020, with clinical decisions guided by PSMA-PET results and contemporary standards. The primary end point was freedom from biochemical failure, defined as 2 consecutive PSA rises >0.2 ng/mL after treatment. Data were divided into training (708 patients), testing (271 patients), and external validation (50 patients) sets for machine learning algorithm development and validation. RSF models were used, with 1000 trees per model, optimizing predictive performance using the Harrell concordance index and Brier score. Statistical analysis used R Statistical Software (R Foundation for Statistical Computing), and ethical approval was obtained from participating institutions. Results Baseline characteristics of 1029 patients undergoing sRT PSMA-PET–based assessment were analyzed. The median age at sRT was 70 (IQR 64-74) years. PSMA-PET scans revealed local recurrences in 43.9% (430/979) and nodal recurrences in 27.2% (266/979) of patients. Treatment included dose-escalated sRT to pelvic lymphatics in 35.6% (349/979) of cases. The external outlier validation set showed distinct features, including higher rates of positive lymph nodes (47/50, 94% vs 266/979, 27.2% in the learning cohort) and lower delivered sRT doses (<66 Gy in 57/979, 5.8% vs 46/50, 92% of patients; P<.001). The RSF model, validated internally and externally, demonstrated robust predictive performance (Harrell C-index range: 0.54-0.91) across training and validation datasets, outperforming a previously published nomogram. Conclusions The developed RSF model demonstrates enhanced predictive accuracy, potentially improving patient outcomes and assisting clinicians in making treatment decisions.
Background Salvage radiation therapy (sRT) is often the sole curative option in patients with biochemical recurrence after radical prostatectomy. After sRT, we developed and validated a nomogram to predict freedom from biochemical failure. Objective This study aims to evaluate prostate-specific membrane antigen–positron emission tomography (PSMA-PET)–based sRT efficacy for postprostatectomy prostate-specific antigen (PSA) persistence or recurrence. Objectives include developing a random survival forest (RSF) model for predicting biochemical failure, comparing it with a Cox model, and assessing predictive accuracy over time. Multinational cohort data will validate the model’s performance, aiming to improve clinical management of recurrent prostate cancer. Methods This multicenter retrospective study collected data from 13 medical facilities across 5 countries: Germany, Cyprus, Australia, Italy, and Switzerland. A total of 1029 patients who underwent sRT following PSMA-PET–based assessment for PSA persistence or recurrence were included. Patients were treated between July 2013 and June 2020, with clinical decisions guided by PSMA-PET results and contemporary standards. The primary end point was freedom from biochemical failure, defined as 2 consecutive PSA rises >0.2 ng/mL after treatment. Data were divided into training (708 patients), testing (271 patients), and external validation (50 patients) sets for machine learning algorithm development and validation. RSF models were used, with 1000 trees per model, optimizing predictive performance using the Harrell concordance index and Brier score. Statistical analysis used R Statistical Software (R Foundation for Statistical Computing), and ethical approval was obtained from participating institutions. Results Baseline characteristics of 1029 patients undergoing sRT PSMA-PET–based assessment were analyzed. The median age at sRT was 70 (IQR 64-74) years. PSMA-PET scans revealed local recurrences in 43.9% (430/979) and nodal recurrences in 27.2% (266/979) of patients. Treatment included dose-escalated sRT to pelvic lymphatics in 35.6% (349/979) of cases. The external outlier validation set showed distinct features, including higher rates of positive lymph nodes (47/50, 94% vs 266/979, 27.2% in the learning cohort) and lower delivered sRT doses (<66 Gy in 57/979, 5.8% vs 46/50, 92% of patients; P<.001). The RSF model, validated internally and externally, demonstrated robust predictive performance (Harrell C-index range: 0.54-0.91) across training and validation datasets, outperforming a previously published nomogram. Conclusions The developed RSF model demonstrates enhanced predictive accuracy, potentially improving patient outcomes and assisting clinicians in making treatment decisions.
BACKGROUND Salvage radiation therapy (sRT) is often the sole curative option in patients with biochemical recurrence after radical prostatectomy. After sRT, we developed and validated a nomogram to predict freedom from biochemical failure. OBJECTIVE This study aims to evaluate prostate-specific membrane antigen–positron emission tomography (PSMA-PET)–based sRT efficacy for postprostatectomy prostate-specific antigen (PSA) persistence or recurrence. Objectives include developing a random survival forest (RSF) model for predicting biochemical failure, comparing it with a Cox model, and assessing predictive accuracy over time. Multinational cohort data will validate the model’s performance, aiming to improve clinical management of recurrent prostate cancer. METHODS This multicenter retrospective study collected data from 13 medical facilities across 5 countries: Germany, Cyprus, Australia, Italy, and Switzerland. A total of 1029 patients who underwent sRT following PSMA-PET–based assessment for PSA persistence or recurrence were included. Patients were treated between July 2013 and June 2020, with clinical decisions guided by PSMA-PET results and contemporary standards. The primary end point was freedom from biochemical failure, defined as 2 consecutive PSA rises >0.2 ng/mL after treatment. Data were divided into training (708 patients), testing (271 patients), and external validation (50 patients) sets for machine learning algorithm development and validation. RSF models were used, with 1000 trees per model, optimizing predictive performance using the Harrell concordance index and Brier score. Statistical analysis used R Statistical Software (R Foundation for Statistical Computing), and ethical approval was obtained from participating institutions. RESULTS Baseline characteristics of 1029 patients undergoing sRT PSMA-PET–based assessment were analyzed. The median age at sRT was 70 (IQR 64-74) years. PSMA-PET scans revealed local recurrences in 43.9% (430/979) and nodal recurrences in 27.2% (266/979) of patients. Treatment included dose-escalated sRT to pelvic lymphatics in 35.6% (349/979) of cases. The external outlier validation set showed distinct features, including higher rates of positive lymph nodes (47/50, 94% vs 266/979, 27.2% in the learning cohort) and lower delivered sRT doses (<66 Gy in 57/979, 5.8% vs 46/50, 92% of patients; <i>P</i><.001). The RSF model, validated internally and externally, demonstrated robust predictive performance (Harrell C-index range: 0.54-0.91) across training and validation datasets, outperforming a previously published nomogram. CONCLUSIONS The developed RSF model demonstrates enhanced predictive accuracy, potentially improving patient outcomes and assisting clinicians in making treatment decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.