As of 29 February 2020 there were 79,394 confirmed cases and 2,838 deaths from COVID-19 in mainland China. Of these, 48,557 cases and 2,169 deaths occurred in the epicenter, Wuhan. A key public health priority during the emergence of a novel pathogen is estimating clinical severity, which requires properly adjusting for the case ascertainment rate and the delay between symptoms onset and death. Using public and published information, we estimate that the overall symptomatic case fatality risk (the probability of dying after developing symptoms) of COVID-19 in Wuhan was 1.4% (0.9-2.1%), which is substantially lower than both the corresponding crude or naïve confirmed case fatality risk (2,169/48,557 = 4.5%) and the approximator 1 of deaths/ deaths + recoveries (2,169/2,169 + 17,572 = 11%) as of 29 February 2020. Compared to those aged 30-59 years, those aged below 30 and above 59 years were 0.6 (0.3-1.1) and 5.1 (4.2-6.1) times more likely to die after developing symptoms. The risk of symptomatic infection increased with age (for example, at ~4% per year among adults aged 30-60 years).On 9 January 2020, the novel coronavirus SARS-CoV-2 was officially identified as the cause of the COVID-19 outbreak in Wuhan, China. One of the most critical clinical and public health questions during the emergence of a completely novel pathogen, especially one that could cause a global pandemic, pertains to the spectrum of illness presentation or severity profile. For the patient and clinician, this affects triage and diagnostic decision-making, especially in settings without ready access to laboratory testing or when surge capacity has been exceeded. It also influences therapeutic choice and prognostic expectations. For managers of health services, it is important for rapid forward planning in terms of procurement of supplies, readiness of human resources to staff beds at different intensities of care and generally ensuring the sustainability of the health system through the peak and duration of the epidemic.At the population level, determining the shape and size of the 'clinical iceberg' 2,3 , both above and below the observed threshold (in turn determined by symptomatology, care-seeking behavior and clinical access), is key to understanding the transmission dynamics and interpreting epidemic trajectories. Specifically, delineating the proportion of infections that are clinically unobserved under different circumstances is critical to refining model parameterization. In turn, estimates of both the observed and unobserved infections are essential for informing the development and evaluation of public health strategies, which need to be traded off against economic, social and personal freedom costs. For example, drastic social distancing and mobility restrictions, such as school closures and travel advisories/bans, should only be considered if an accurate estimation