Lasting B-cell persistence depends on survival signals that are transduced by cell surface receptors. Here, we describe a novel biological mechanism essential for survival and homeostasis of normal peripheral mature B cells and chronic lymphocytic leukemia (CLL) cells, regulated by the heparin-binding cytokine, midkine (MK), and its proteoglycan receptor, the receptor-type tyrosine phosphatase zeta (RPTPζ). We demonstrate that MK initiates a signaling cascade leading to B cell survival, by binding to RPTPζ. In mice lacking PTPRZ, the proportion and number of the mature B cell population is reduced. Our results emphasize a unique and critical function for MK signaling in the previously described MIF/CD74 induced survival pathway. Stimulation of CD74 with MIF leads to c-Met activation, resulting in elevation of MK expression in both normal mouse splenic B and CLL cells. Our results indicate that MK and RPTPζ are important regulators of the B cell repertoire. These findings could pave the way towards understanding the mechanisms shaping B cell survival, and suggest novel therapeutic strategies based on the blockade of the midkine/RPTPζ-dependent survival pathway.