Aims: Cigarette smoking is one of the most complex and least understood cardiovascular risk factors. Importantly, differences in the tobacco-related pathophysiology of endothelial dysfunction, an early event in atherogenesis, between circulatory beds remain elusive. Therefore, this study evaluated how smoking impacts endothelial function of conduit and resistance arteries in a large population-based cohort.Methods and results: 15,010 participants (aged 35–74 years) of the Gutenberg Health Study were examined at baseline from 2007 to 2012. Smoking status, pack-years of smoking, and years since quitting smoking were assessed by a computer-assisted interview. Endothelial function of conduit and resistance arteries was determined by flow-mediated dilation (FMD) of the brachial artery, reactive hyperemia index (RHI) using peripheral arterial tonometry, as well as by reflection index (RI) derived from digital photoplethysmography, respectively. Among all subjects, 45.8% had never smoked, 34.7% were former smokers, and 19.4% were current smokers. Mean cumulative smoking exposure was 22.1 ± 18.1 pack-years in current smokers and mean years since quitting was 18.9 ± 12.7 in former smokers. In multivariable linear regression models adjusted for typical confounders, smoking status, pack-years of smoking, and years since quitting smoking were independently associated with RHI and RI, while no association was found for FMD. Overall, no clear dose-dependent associations were observed between variables, whereby higher exposure tended to be associated with pronounced resistance artery endothelial dysfunction.Conclusions: Cigarette smoking is associated with altered endothelial function of resistance, but not conduit arteries. The present results suggest that smoking-induced endothelial dysfunction in different circulatory beds may exhibit a differential picture.