BackgroundA paradoxical inverse relationship between body mass index, morbidity and mortality in patients with ischemic heart disease has been noted; but the underlying mechanisms remain unclear. Given that coronary resistance arteries are the primary regulators of myocardial blood flow, we examined the effects of obesity and medication on dilator function in coronary microvessels.MethodsBradykinin-induced coronary dilation was assessed by videomicroscopy in ex vivo coronary arterioles obtained from 64 consecutive patients undergoing heart surgery. Multi-variable linear regression and logistic regression were used to investigate the effects of obesity (BMI ≥ 30 kg/M2) and the influences of medications on vessel responses.ResultsIn isolated, pressurized (80 mmHg) coronary arterioles of obese and non-obese patient the active (73±4 vs. 79±13 μm) and passive (111 ± 5.5 vs. 118 ± 5.0 μm) diameters were similar. Bradykinin elicited substantial dilation in coronary arterioles, with a similar magnitude in obese and non-obese patients (to 10-8 M: 55 ± 5% vs. 46 ± 5%, P = 0.20), but with significantly enhanced sensitivity in obesity (EC50: 8.2x10-9 M vs. 1.9x10-8 M, respectively, P = 0.03). When adjusted for other risk factors and medications, obesity and statins were determined to be the only positive predictors of enhanced dilation, as assessed with multiple regression analysis. Moreover, obese patients with or without statin exhibited significantly increased coronary dilation to bradykinin, when compared to non-obese patients without statin therapy.ConclusionsObesity and statin therapy are independently associated with an enhanced dilator function of coronary arterioles in patients undergoing heart surgery, which may offer a potential mechanism for the better cardiovascular outcome described earlier as the obesity paradox.