TikTok Shop is one of the features in TikTok application which facilitates users to buy and sell products. The integration of TikTok Shop with social media has provided new opportunities to reach customers and increase sales. However, the closure of TikTok Shop has caused controversy among the public. This study aims to analyze the views and responses of TikTok users in Indonesia to the closure of TikTok Shop. The dataset used was obtained from Twitter. The research methodology consists of labeling, oversampling, splitting, and machine learning, which includes SVM, Random Forest, Decision Tree, and Deep Learning (H2O). The contribution of this research enriches our understanding of the implementation of machine learning, especially in sentiment analysis of TikTok Shop closures. From the test results, it is known that Deep Learning (H2O) + SMOTE obtained AUC 0.900, without using SMOTE, AUC 0.867. SVM + SMOTE obtained AUC 0.885, without using SMOTE AUC 0.881. Random Forest + SMOTE obtained AUC 0.822, while without using SMOTE AUC 0.830. Decision Tree + SMOTE AUC 0.59; without SMOTE, AUC 0.646. Deep Learning (H2O) with SMOTE produces better performance compared to SVM, Random Forest, and Decision Tree. With an AUC of 0.900; it can be said that Deep Learning (H2O) has excellent performance for sentiment analysis of TikTok Shop closures. This research has significant implications for social electronic commerce due to its potential utilization by social media analysts.