2023
DOI: 10.1007/s10115-023-01869-8
|View full text |Cite
|
Sign up to set email alerts
|

Migrating federated learning to centralized learning with the leverage of unlabeled data

Abstract: Federated learning carries out cooperative training without local data sharing, the obtained global model performs generally better than independent local models. Benefiting from the free data sharing, federated learning preserves the privacy of local users. However, the performance of the global model might be degraded if diverse clients hold non-IID training data. This is because the different distributions of local data lead to weight divergence of local models. In this paper, we introduce a novel teacher-s… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 34 publications
0
0
0
Order By: Relevance