In healthy individuals, the majority of cortisol secretion occurs within several hours surrounding morning awakening. A highly studied component of this secretory period is the cortisol awakening response (CAR), the rapid increase in cortisol levels across the first 30-45 min after morning awakening. This strong cortisol burst at the start of the active phase has been proposed to be functional in preparing the organism for the challenges of the upcoming day. Here, we review evidence on key regulatory and functional processes of the CAR and develop an integrative model of its functional role. Specifically, we propose that, in healthy individuals, the CAR is closely regulated by an intricate dual-control system, which draws upon key circadian, environmental and neurocognitive processes to best predict the daily need for cortisol-related action. Fine-tuned CAR expression, in turn, is then assumed to induce potent glucocorticoid action via rapid non-genomic and slower genomic pathways (e.g., affecting circadian clock gene expression) to support and modulate daily activity through relevant metabolic, immunological and neurocognitive systems. We propose that this concerted action is adaptive in mediating two main functions: a primary process to mobilize resources to meet activity-related demands and a secondary process to help the organism counterregulate adverse prior-day emotional experiences.