This study addresses the prediction of the somatic cell counts of the milk used in the production of sheep cheese using artificial neural networks. To achieve this objective, the neural network was designed using 33 parameters of the physicochemical composition of the cheeses obtained after they have been matured for 12 mo as input data. The physicochemical analysis of the cheeses revealed that the somatic cell count level of the cheese has a significant influence on the amount of protein, fat, dry extract, and fatty acids. When properly set up, the neural network allows the correct classification of the cheeses (100% of correct results in both training and test phases) and therefore their samples in each of the 3 nominal output variables (low, average, and high somatic cell counts). The fatty composition of the cheeses, individual fatty acids, and fat acidity are the variables that most affect the correct operation of the neural network.