A mechanical alloying (MA) process was used to produce lead-free solder pastes of Sn-3.5Ag and the Sn-3.5Ag-4Bi system. Because of the high energy induced by repeated fracturing and welding, the grinding media played an important role during the MA process. A ceramic container was used to provide stronger impact force, which could induce phase transformation better than a Teflon container. In addition, it was found that 1-cm balls could fracture Bi particles and promote their dissolution into the Sn matrix. On the contrary, the milling process tended to achieve homogeneous mixing when using 3-mm balls. The MA powders, after milling with 3-mm balls, showed a small endothermic peak from the differential scanning calorimetry (DSC) profile at around 138°C, which was the eutectic temperature of Sn-Bi. The melting points of the MA powders in the ceramic container were measured to be 221°C and 203°C, respectively, for Sn-3.5Ag and Sn-3.5Ag-4Bi from the DSC curves. The reduced melting point ensured the complete melting during reflow with a peak temperature of 240°C. The formation of Ag 3 Sn was also observed from the x-ray diffraction peaks, indicating successful alloying by MA. The solder pastes could, thus, be produced by adding flux into the MA powders. The wetting property of the solder joint was also evaluated. The as-prepared solder pastes on electroless Ni-P/Cu/Si showed good metallurgical bonding with a contact angle less than 20°.