In this paper the numerical solution of non-autonomous semilinear stochastic evolution equations driven by an additive Wiener noise is investigated. We introduce a novel fully discrete numerical approximation that combines a standard Galerkin finite element method with a randomized Runge-Kutta scheme. Convergence of the method to the mild solution is proven with respect to the L p -norm, p ∈ [2, ∞). We obtain the same temporal order of convergence as for Milstein-Galerkin finite element methods but without imposing any differentiability condition on the nonlinearity. The results are extended to also incorporate a spectral approximation of the driving Wiener process. An application to a stochastic partial differential equation is discussed and illustrated through a numerical experiment.2010 Mathematics Subject Classification. 60H15, 65C30, 65M12, 65M60.