Neuropathology involving TAR DNA binding protein-43 (TDP-43) has been identified in a wide spectrum of neurodegenerative diseases collectively named as TDP-43 proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). To test whether increased expression of wide-type human TDP-43 (hTDP-43) may cause neurotoxicity in vivo, we generated transgenic flies expressing hTDP-43 in various neuronal subpopulations. Expression in the fly eyes of the full-length hTDP-43, but not a mutant lacking its amino-terminal domain, led to progressive loss of ommatidia with remarkable signs of neurodegeneration. Expressing hTDP-43 in mushroom bodies (MBs) resulted in dramatic axon losses and neuronal death. Furthermore, hTDP-43 expression in motor neurons led to axon swelling, reduction in axon branches and bouton numbers, and motor neuron loss together with functional deficits. Thus, our transgenic flies expressing hTDP-43 recapitulate important neuropathological and clinical features of human TDP-43 proteinopathy, providing a powerful animal model for this group of devastating diseases. Our study indicates that simply increasing hTDP-43 expression is sufficient to cause neurotoxicity in vivo, suggesting that aberrant regulation of TDP-43 expression or decreased clearance of hTDP-43 may contribute to the pathogenesis of TDP-43 proteinopathy. Recent studies show that TDP-43 is a major protein component of neuronal inclusion bodies in the affected tissues in a range of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTLD) (6, 7), Alzheimer's disease (AD) (8-10), and other types of dementia (10-13). Decreased protein solubility, hyperphosphorylation, abnormal cleavage, and cytoplasmic mislocalization of TDP-43 have been associated with TDP-43 proteinopathy (14-16). It is not clear whether TDP-43 proteinopathy is caused by loss-of-function of TDP-43 or gain-of-function neurotoxicity. Here, we report the generation and characterization of transgenic flies expressing human TDP-43. In different types of neurons, including photoreceptors, mushroom bodies, or motor neurons, simply overexpressing hTDP-43 by itself is sufficient to cause protein aggregate formation and neuronal loss in an agedependent manner, suggesting that increased hTDP-43 expression or aberrant accumulation of hTDP-43 may lead to TDP-43 proteinopathy. Our transgenic flies recapitulate important pathological and clinical features of ALS, representing a powerful animal model for TDP-43 proteinopathy.
ResultsGeneration of Transgenic Flies Expressing Human TDP-43. To study human TDP-43 (hTDP-43) in vivo, we used Drosophila, a powerful genetic model widely used to study neurodegeneration (17, 18). We generated transgenic flies expressing monomeric red fluorescent protein (RFP) as a control or hTDP-43 fused to RFP in different populations of neurons using UAS/Gal4 system (19) (Fig. S1C).We also generated transgenic flies expressing a mutant hTDP-43, T202, containing the carboxy...