Murine cytomegalovirus protein M45 contains a RIP homotypic interaction motif (RHIM) that is sufficient to confer protection of infected cells against necroptotic cell death. Mechanistically, the N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils, and interacts with the endogenous RHIM domains of receptor-interacting protein kinases (RIPK) 1, RIPK3, Z-DNA binding protein 1, and TIR domain-containing adaptor-inducing interferon-β. Remarkably, all four mammalian proteins harbouring such a RHIM domain are key components of inflammatory signalling and regulated cell death processes. Immunogenic cell death by regulated necrosis causes extensive tissue damage in a wide range of diseases, including ischemia reperfusion injury, myocardial infarction, sepsis, stroke and organ transplantation. To harness the cell death suppression properties of M45 protein in a therapeutically usable manner, we developed a synthetic peptide encompassing only the RHIM domain of M45. To trigger delivery of RHIM into target cells, we fused the transactivator protein transduction domain of human immunodeficiency virus 1 to the N-terminus of the peptide. The fused peptide could efficiently penetrate eukaryotic cells, but unexpectedly it killed all tested cancer cell lines and primary cells irrespective of species without further stimulus through a necrosis-like cell death. Typical inhibitors of different forms of regulated cell death cannot impede this process, which appears to involve a direct disruption of biomembranes. Nevertheless, our finding has potential clinical relevance; reliable induction of a necrotic form of cell death distinct from all known forms of regulated cell death may offer a novel therapeutic approach to combat resistant tumour cells.