Recent analyses suggest bacterial and/or mitochondrion-like ancestry for giant viruses (Megavirales sensu latu): amoeban mitochondrial gene arrangements resemble those of their candidate homologs in megaviral genomes. This presumed ancestral synteny decreases with genome size across megaviral families at large and within Poxviridae. In this study, analyses focus on Phycodnaviridae, a polyphyletic group of giant viruses infecting Haplophyta, Stramenopiles, and other algae, using syntenies between algal mitogene arrangements and chloroplast genomes and Rickettsia prowazekii as positive controls. Mitogene alignment qualities with Rickettsia are much higher than with viral genomes. Mitogenome synteny with some viruses is higher, for others lower than with Rickettsia, despite lower alignments qualities. In some algae, syntenies among cohosted chloroplast, virus, and mitochondrion are higher, in others lower than expected. This suggests gene order coevolution in cohosted genomes, different coregulations of organelle metabolisms for different algae, and viral mitogenome mimicry, to hijack organelle-committed cellular resources and/or escape cellular defenses/genetic immunity systems. This principle might explain high synteny between human mitochondria and the pathogenic endocellular alphaproteobacterium R. prowazekii beyond common ancestry. Results indicate that putative bacteria/mitochondrion-like genomic ancestors of Phycodnaviridae originated before or at the mitochondrionbacteria split, and ulterior functional constraints on gene arrangements of cohosted genomes.