In this work, we propose a hybrid power line communication (PLC)/visible light communication (VLC)/radio frequency (RF) fronthaul with a fiber based wired backhaul system to support massive number of smart devices (SDs). Since, a signal-to-noise ratio (SNR) based access point (AP) association and bandwidth (BW) allocation for each SD do not necessarily improve the system capacity, we propose novel and efficient AP association and BW allocation strategies to maximize the sum rate capacity (SRC) of the hybrid system under consideration. An optimization problem is formulated for the SRC with the AP association and BW allocation as the optimization parameters and a hierarchical decomposition method is used to convert the non-linear optimization problem into a set of convex optimization problems. Then, the proposed strategies are used to solve the optimization problem in an iterative manner till the SRC converges to an optimal value. Further, an analytical approximation for the BW allocated to each SD for a given AP association is derived using the Lagrangian multiplier method. The performance of the proposed system is evaluated through extensive numerical results. Moreover, the effect of the increased number of SDs on the optimal SRC is analysed.