We apply BERT to coreference resolution, achieving strong improvements on the OntoNotes (+3.9 F1) and GAP (+11.5 F1) benchmarks. A qualitative analysis of model predictions indicates that, compared to ELMo and BERT-base, BERT-large is particularly better at distinguishing between related but distinct entities (e.g., President and CEO). However, there is still room for improvement in modeling document-level context, conversations, and mention paraphrasing. Our code and models are publicly available 1 .