The electrical properties of isolated graphene established precedents for studies of electrical superconducting materials at room temperature. After the discovery of stabilized graphene and graphite nanoplatelets in a geological context, the interest in characterizing the properties of these minerals arose. This work evaluates the electrical resistance evolution of mineral graphite and talc heterostructures under progressive metamorphism simulated in the laboratory. The experiments were conducted on an end-loaded piston-cylinder apparatus. This equipment allows for the application of equal pressure in all sample directions (lithostatic pressure) and heating, simulating geological phenomena. The behavior of two sets of mineral samples were compared: graphite and talc in billets and powder. Samples in billets were submitted to treatments at 400 °C and 4 kbar; 400 °C and 6 kbar; and 700 °C and 9 kbar. The powder samples were subjected to 700 °C and 9 kbar, with two ways of disposing the mineral powders (mixed and in adjacent contact) beyond 900 °C and 9 kbar (in adjacent contact). The results show that the samples in billets had lower electrical resistance when compared to the powder samples. The lowest electrical resistance was observed in the sample treated at 400 °C and 6 kbar, conditions that are consistent with metamorphic mineral assemblage observed in the field. Powdered samples showed better cleavage efficiency during the experiment, resulting in thinner flakes and even graphene, as pointed out by Raman spectroscopy. However, these flakes were not communicating, which resulted in high electrical resistance, due to the need for an electrical current to pass through the talc, resulting in a Joule effect. The maximum electrical resistance obtained in the experiment was obtained in the sample submitted to 900 °C, in which talc decomposed into other mineral phases that were even more electrically insulating. This work demonstrates that electrical resistance prospecting can be an efficient tool to identify potential target rocks with preserved mineral nanometric heterostructures that can form an important raw material for the nanotechnology industry.