Citation for published item:q rz ntiD iF nd elEtu ouryD eFsF nd oleikh eiD F nd ermees hD F nd totheriD tF nd ekko D fw nd y idD eFuF nd ellenD wFfF nd end¡ oD F nd vimont D F nd do nD wF nd esentiniD eF nd ittnerD wF nd ezzoliD qF @PHITA 9 he iuphr tesE igrisEu run river system X proven n eD re y ling nd dispers l of qu rtzEpoor forel ndE sin sediments in rid lim teF9D i rthEs ien e reviewsFD ITP F ppF IHUEIPVF Further information on publisher's website:httpsXGGdoiForgGIHFIHITGjFe rs irevFPHITFHWFHHW
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract: We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and heavy-mineral dataset, integrated by sand geochemistry and U-Pb age spectra of detrital zircons, highlights the several peculiarities of this large source-tosink sediment-routing system and widens the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison of classical static versus upgraded dynamic petrologic models enhance the power of provenance analysis, and allow us to derive a more refined conceptual model of reference and to verify the limitations of the approach. Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic mélanges representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, Kfeldspar and mica. This quartz-poor petrographic signature, characterizing the undissected composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate in the region allows preservation of chemically unstable grains including carbonate rock fragments and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical carbonate factory. Quartz-poor sediment from the AnatoliaZagros orogen mixes with quartz-rich recycled sands from Arabia along the western side of the foreland basin, and is traced all along the Gulf shores as far as the Rub' al-Khali sand sea up to 4000 km from Euphrates headwaters.Reviewer #1: This is an excellent review of an intriguing complex modern sediment source-to-sink system that has not been studied in a comprehensive manner prior to...