2009
DOI: 10.1007/s00542-009-0920-4
|View full text |Cite
|
Sign up to set email alerts
|

Miniaturization limits of piezoresistive MEMS accelerometers

Abstract: We present the miniaturization limits of axially loaded piezoresistive MEMS accelerometers. Therefore we identify limiting factors on the basis of FEM-verified analytical models. To ensure a broad discussion we compare two different axially loaded topologies: first a conventional topology, which can be manufactured already today, and second a future-oriented topology utilizing nanowires. To enable a realistic comparison of the different topologies we shrink the sensor while maintaining a specific performance (… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0

Year Published

2009
2009
2013
2013

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 22 publications
(10 citation statements)
references
References 27 publications
0
10
0
Order By: Relevance
“…The desired properties of microaccelerometers include high sensitivity, maximum operating range, wide frequency response, high resolution, good linearity, low offset, shock survival ability and low cross-axis sensitivity. There are several mechanisms for acceleration sensing such as piezoresistive (Roylance and Angell 1979;Allen et al 1989;Tschan et al 1991;Riethmuller et al 1992;Burrer et al 1994;Kim et al 1995;Chen et al 1997;Takao and Matsumoto 1998;Plaza et al 1998;Kwon and Park 1998;Patridge et al 2000;Huang et al 2005;Park et al 2006;Amarasinghe et al 2005;Kal et al 2006;Eklund and Shkel 2007;Dong et al 2008;Engesser et al 2009;Ravi Sankar et al 2009a, b), piezoelectric (Kobayashi et al 2010), capacitive (Hsu et al 2009;Farahani et al 2009;Ravi Sankar et al 2011), tunneling (Hsien et al 1998), etc. Each of the above acceleration sensing mechanisms has its own merits and demerits.…”
Section: Introductionmentioning
confidence: 98%
“…The desired properties of microaccelerometers include high sensitivity, maximum operating range, wide frequency response, high resolution, good linearity, low offset, shock survival ability and low cross-axis sensitivity. There are several mechanisms for acceleration sensing such as piezoresistive (Roylance and Angell 1979;Allen et al 1989;Tschan et al 1991;Riethmuller et al 1992;Burrer et al 1994;Kim et al 1995;Chen et al 1997;Takao and Matsumoto 1998;Plaza et al 1998;Kwon and Park 1998;Patridge et al 2000;Huang et al 2005;Park et al 2006;Amarasinghe et al 2005;Kal et al 2006;Eklund and Shkel 2007;Dong et al 2008;Engesser et al 2009;Ravi Sankar et al 2009a, b), piezoelectric (Kobayashi et al 2010), capacitive (Hsu et al 2009;Farahani et al 2009;Ravi Sankar et al 2011), tunneling (Hsien et al 1998), etc. Each of the above acceleration sensing mechanisms has its own merits and demerits.…”
Section: Introductionmentioning
confidence: 98%
“…However, we could not discover any commercially available moving-gate accelerometers. Engesser et al (2009) presents the miniaturization limits of piezoresistive MEMS accelerometers, which use another alternative transducer principle.…”
Section: State Of the Artmentioning
confidence: 99%
“…An analytical model of a piezoresistive MEMS accelerometer can be found in Engesser et al (2009). Compared to the capacitive case, the piezoresistive case is characterized by an additional nonlinear parameter (doping density) and a higher number of constraints.…”
Section: Piezoresistive Complex Model With Highly Nonlinear Constraintsmentioning
confidence: 99%