(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.In this study, to fabricate a carbon free (C-free) air electrode, Co3O4 nanofibers were grown directly on a Ni mesh to obtain Co3O4 with a high surface area and good contact with the current collector (the Ni mesh). In Li-air cells, any C present in the air electrode promotes unwanted side reactions. Therefore, the air electrode composed of only Co3O4 nanofibers (i.e., C-free) was expected to suppress these side reactions, such as the decomposition of the electrolyte and formation of Li2CO3, which would in turn enhance the cyclic performance of the cell. As predicted, the Co3O4-nanofiber electrode successfully reduced the accumulation of reaction products during cycling, which was achieved through the suppression of unwanted side reactions. In addition, the cyclic performance of the Li-air cell was superior to that of a standard electrode composed of carbonaceous material.