A biosensor system refers to a biomedical device, which detects biological, chemical, or biochemical components by converting those signals to an electrical signal by utilizing and uniting physical or chemical transducer with biorecognition elements. An electrochemical biosensor is generally based on the reaction of either production or consumption of electrons under a three‐electrode system. Biosensor systems are exploited in a wide range of areas, such as medicine, agriculture, husbandry, food, industry, environment protection, quality control, waste disposal, and the military. Pathogenic infections are the third leading cause of death worldwide after cardiovascular diseases and cancer. Therefore, there is an urgent need for effective diagnostic tools to control food, water, and soil contamination result in protecting human life and health. Aptamers are peptide or oligonucleotide‐based molecules that show very high affinity to their targets that are produced from large pools of random amino acid or oligonucleotide sequences. Generally, aptamers have been utilized for fundamental sciences and clinical implementations for their target‐specific affinity and have been intensely exploited for different kinds of biosensor applications for approximately 30 years. The convergence of aptamers with biosensor systems enabled the construction of voltammetric, amperometric, and impedimetric biosensors for the detection of specific pathogens. In this review, electrochemical aptamer biosensors were evaluated by discussing the definition, types, and production techniques of aptamers, the advantages of aptamers as a biological recognition element against their alternatives, and a wide range of aptasensor examples from literature in the detection of specific pathogens.