This paper presents two novel different feeding and coupling schemes to solve the problem of generating transmission zeros (TZ) in lower stopband and their applications to design single-band filters. The designed two filters are based on substrate integrated waveguide (SIW) square cavity with orthogonal ports. In the design of Filter A, two L-shaped stubs are introduced to form an addition coupling path between two ports, which cause the generation of one TZ. Other two TZs are formed due to the resonance characteristics of L-shaped stubs and ports offset. Two metal vias are used to adjust center frequency slightly. In the design of Filter B, other two stubs are designed to form two additional coupling paths, thus forming a total of three coupling paths with the original path. Two TZs are obtained by utilizing the phase difference between different paths, and one TZ is generated for the resonance characteristics of the proposed stub 3. Simultaneously, an L-shaped slot is used to adjust center frequency. Both designed filters use the coplanar waveguide (CPW) structure to control bandwidth. Two filters are set to operate at 14.4 GHz with bandwidth of 800 MHz. Both filters are fabricated and measured. The simulation results of two filters are in good agreement with the measured ones.