To extend the wideband performance of high-order band-pass filtering applications, optimized designs with knitted structures based on traditional miniaturized frequency-selective surfaces (FSSs) are proposed in this paper. The presented miniaturized FSSs consist of multiple metallic capacitive layers, knitted inductive layers, and substrates. In contrast to the conventional high-order miniaturized FSSs composed of metallic frames, patches, and substrates, the optimized miniaturized FSSs replace the original metallic wire frames with knitted structures. Both proposed modified miniaturized FSSs achieve a flat pass-band from 5.5 GHz to 10.3 GHz with a 3 dB bandwidth of 71.6% under vertical incidence. The unit cells have dimensions of 0.16 λ0 × 0.16 λ0 × 0.284 λ0 and 0.16 λ0 × 0.16 λ0 × 0.279 λ0, respectively, where λ0 is the free space wavelength at 7.9 GHz, which is the center frequency of the operating band. Numerical simulations and measurements demonstrate that the proposed modified miniaturized FSSs exhibit excellent wideband performance with clean transition bands around the pass-band during oblique incidence and are suitable for applications such as radomes, where wideband filtering is essential for covering multi-band functions of radar or communication instruments.