This paper presents a social spider optimization (SSO) design of a small-size microstrip antenna. Two antenna miniaturization techniques, based on the use of a Koch fractal contour and a shorting post (connecting the patch to the ground plane), are combined to enable a major size reduction. The antenna is inset fed by a microstrip line. The developed SSO algorithm is used to find out the best radius and position of the shorting post and the length of the inset feed, to achieve the desired resonant frequency with good impedance matching. Antenna prototypes have been fabricated and measured. The good agreement obtained between numerical simulation and experimental results has validated the design procedure. Compared with a conventional rectangular patch, the antenna resonance frequency is reduced from 2.45 GHz to 730 MHz, which corresponds to a remarkable miniaturization of about 70%. The proposed antenna is suitable for applications in the 700-800 MHz frequency range, such as 4G mobile communication systems.