Consider tuples of separable algebras over a common local or global number
field, related to each other by specified resolvent constructions. Under the
assumption that all ramification is tame, simple group-theoretic calculations
give best possible divisibility relations among the discriminants. We show that
for many resolvent constructions, these divisibility relations continue to hold
even in the presence of wild ramification.Comment: 31 pages, 11 figures. Version 2 fixes a normalization error: |G| is
corrected to n in Section 7.5. Version 3 fixes an off-by-one error in Section
6.