2010
DOI: 10.1142/9789814291255
|View full text |Cite
|
Sign up to set email alerts
|

Minimal Submanifolds in Pseudo-Riemannian Geometry

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
74
0
14

Year Published

2014
2014
2020
2020

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 31 publications
(89 citation statements)
references
References 0 publications
1
74
0
14
Order By: Relevance
“…However for nonstatic cases, where the timelike killing vector is not hypersurface orthogonal, or for dynamical geometries, where there is no time like Killing vector, γ A is no more minimal, and therefore RT proposal fails and one has to resort to the more general HRT proposal. (In terms of nomenclature, in the mathematics literature, a minimal surface refers to just the critical point of the area functional and may not correspond to the minimum of the functional [7]. This is particularly the case in manifolds endowed with a semi-Riemannian metric.…”
Section: Introductionmentioning
confidence: 99%
“…However for nonstatic cases, where the timelike killing vector is not hypersurface orthogonal, or for dynamical geometries, where there is no time like Killing vector, γ A is no more minimal, and therefore RT proposal fails and one has to resort to the more general HRT proposal. (In terms of nomenclature, in the mathematics literature, a minimal surface refers to just the critical point of the area functional and may not correspond to the minimum of the functional [7]. This is particularly the case in manifolds endowed with a semi-Riemannian metric.…”
Section: Introductionmentioning
confidence: 99%
“…Let (Σ, g) be a two dimensional oriented manifold endowed with a non degenerate Lorentzian metric g. Then in a neighbourhood of any point there exist local isothermic coordinates (s, t), i.e., g ss = −g tt and g st = 0 (see [2]). The endomorphism j : TΣ → TΣ defined by j(∂/∂s) = ∂/∂t and j(∂/∂t) = ∂/∂s, satisfies j 2 = Id T Σ and g(j., j.)…”
Section: The Product Para-kähler Structurementioning
confidence: 99%
“…The metric G ǫ is of neutral signature and therefore a necessary condition for a minimal surface to be stable is that the induced metric Φ * G ǫ must be Riemannian [2]. This implies that ǫ φ = ǫǫ ψ and hence the second variation formula becomes…”
Section: (H-) Stability Of (H-) Minimal Lagrangian Surfacesmentioning
confidence: 99%
“…Vol(M t ) = 0, onde M t é uma variação de M, dentro de M, que fixa o bordo de M. Mostra-se (vide, por exemplo, Anciaux em [25] ou Osserman em [9]) que tais subvariedades na verdade minimizam localmente este funcional volume. Outra condição relacionada com esta é a seguinte: M é dita totalmente geodésica se a sua Segunda Forma Fundamental é identicamente nula: II = 0.…”
Section: Lista De Figuras VIII Introdução 1 Introduçãounclassified
“…Define-se, como no caso Riemanniano, um certo funcional volume, e mostra-se novamente (Anciaux, em [25]) que uma subvariedade (com métrica induzida também não-degenerada) é um ponto crítico de tal funcional volume se e somente se o seu vetor curvatura média é identicamente nulo. Todavia, deixa de ser verdade que tais subvariedades minimizam localmente o volume.…”
Section: Lista De Figuras VIII Introdução 1 Introduçãounclassified