We focus on Gröbner bases for modules of univariate polynomial vectors over a ring. We identify a useful property, the "predictable leading monomial (PLM) property" that is shared by minimal Gröbner bases of modules in F[x] q , no matter what positional term order is used. The PLM property is useful in a range of applications and can be seen as a strengthening of the wellknown predictable degree property (= row reducedness), a terminology introduced by Forney in the 70's. Because of the presence of zero divisors, minimal Gröbner bases over a finite ring of the type Zpr (where p is a prime integer and r is an integer > 1) do not necessarily have the PLM property. In this paper we show how to derive, from an ordered minimal Gröbner basis, a so-called "minimal Gröbner p-basis" that does have a PLM property. We demonstrate that minimal Gröbner p-bases lend themselves particularly well to derive minimal realization parametrizations over Zpr . Applications are in coding and sequences over Zpr . * M. Kuijper is with the