The substantial volumes of tailings produced during ore beneficiation present significant challenges for sustainable management due to potential public health hazards, particularly from metal leaching. The risk associated with tailings varies greatly depending on their mineralogical composition and climatic conditions. If tailings are classified as a non-hazardous by-product, they may serve as secondary raw materials, offering a sustainable alternative to the reliance on non-renewable primary resources. In this study, the recycling feasibility of tailings from an active copper mine was assessed through mineralogical characterization, environmental tests (e.g., static, kinetic, and leaching tests), and geochemical modeling. This multi-faceted approach aimed to predict the geochemical behavior and reactivity of tailings under varying conditions. Results from the static tests indicated that the tailings were non-acid generating. Weathering cell tests revealed circumneutral pH conditions (6.5–7.8), low sulfide oxidation rates, and low instantaneous metal concentrations (<1 mg/L), except for copper (0.6–3.5 mg/L) and iron (0.4–1.4 mg/L). These conditions are attributed to the low abundance of sulfide minerals, such as pyrite, chalcopyrite, bornite, covellite (<0.1 wt.%), and chalcocite (0.2 wt.%), which are effectively encapsulated within gangue minerals. Additionally, the presence of neutralizing minerals, specifically dolomite (27.4 wt.%) and calcite (2.4 wt.%), further stabilizes pH and promotes metal sequestration in secondary mineral forms. The Toxicity Characteristic Leaching Procedure (TCLP) test confirmed low leachability, classifying the tailings as non-hazardous.