2023
DOI: 10.1101/2023.10.14.562348
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Minimally Sufficient Experimental Design using Identifiability Analysis

Jana L. Gevertz,
Irina Kareva

Abstract: Mathematical models are increasingly being developed and calibrated in tandem with data collection, empowering scientists to intervene in real time based on quantitative model predictions. Well-designed experiments can help augment the predictive power of a mathematical model but the question of when to collect data to maximize its utility for a model is non-trivial. Here we define data as model-informative if it results in a unique parametrization, assessed through the lens of practical identifiability. The f… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 51 publications
0
0
0
Order By: Relevance