We present here an analysis of the regularity of minimizers of a variational model for epitaxially strained thin-films identified by the authors in the companion paper [7]. The regularity of energetically-optimal film profiles is studied by extending previous methods and by developing new ideas based on transmission problems. The achieved regularity results relate to both the Stranski-Krastanow and the Volmer-Weber modes, the possibility of different elastic properties between the film and the substrate, and the presence of the surface tensions of all three involved interfaces: film/gas, substrate/gas, and film/substrate. Finally, geometrical conditions are provided for the optimal wetting angle, i.e., the angle formed at the contact point of films with the substrate. In particular, the Young-Dupré law is shown to hold, yielding what appears to be the first analytical validation of such law for a thin-film model in the context of Continuum Mechanics.