Corner is one of the typical characteristics of aerospace monolithic components. In order to achieve a stable processing environment and reduce the mutation of milling force in the process of machining, the manufacturer has been searching a method to control the milling force of corner machining. Based on the cutting contact relationship and the instantaneous chip thickness, the milling force prediction model of corner machining is established. By analyzing different types of corner contact relationship, the influence of cutting contact angle and cutting arc length on milling force is established. The corner feed rate iterative calculation method is used to improve the corner milling force mutation. The corner milling experiment proves that the proposed method can not only effectively control the corner milling force, but also improve the surface quality of the bottom surface of the workpiece. The proposed method is suitable for automatic programming of multi-corner pocket machining and provides theoretical support for stable machining of frame part.