2018
DOI: 10.4995/riai.2018.8899
|View full text |Cite
|
Sign up to set email alerts
|

Mínimos cuadrados recursivos para un manipulador que aprende por demostración

Abstract: En este trabajo, se desarrolla un sistema de control automatizado para permitir que un manipulador aprenda y planifique las trayectorias a partir de las demostraciones dadas por la mano de un usuario. La entrada de datos es adquirida por un sensor, y se aprende su comportamiento a través de un algoritmo de aprendizaje automático basado en los mínimos cuadrados recursivos. Se utiliza un perfil de trayectoria de interpoladores a tramos para evitar el movimiento impulsivo del manipulador. Se realiza el análisis d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2018
2018
2019
2019

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 0 publications
0
4
0
Order By: Relevance
“…We thus develop a non-linear variant of partial least squares regression (PLSR) [16], which i) handles correlated 'neighboring' inputs in an appropriate fashion and thereby enjoyed a wide usage in data learning problems in the past where such cases occurred -see, e.g., the field of chemometrics [17] or in the field of control systems [18], [19] -, and ii) is able to resolve non-linearities in the co-variance structure between the input matrix X and the target y = QC q .…”
Section: Non-linear Version Of Partial Least Squaresmentioning
confidence: 99%
“…We thus develop a non-linear variant of partial least squares regression (PLSR) [16], which i) handles correlated 'neighboring' inputs in an appropriate fashion and thereby enjoyed a wide usage in data learning problems in the past where such cases occurred -see, e.g., the field of chemometrics [17] or in the field of control systems [18], [19] -, and ii) is able to resolve non-linearities in the co-variance structure between the input matrix X and the target y = QC q .…”
Section: Non-linear Version Of Partial Least Squaresmentioning
confidence: 99%
“…Considering the PD control in [6] and [31], the PD approximation-based controller is given as: Fig. 5 shows the approximate results of the model parameters of robotic system, and Fig.…”
Section: A Case 1: Pd Approximation-based Control (Pd-ac)mentioning
confidence: 99%
“…In fact, due to the interaction between robot and environment, it is difficult to obtain the precise values of p 1 , p 2 and p 3 . Therefore, the estimated values of P is introduced in the approximation-based controller (6). P = p 1p2p3 T wherep 1 ,p 2 andp 3 are the estimated values of p 1 , p 2 and p 3 , respectively.P is given by using the adaptive controller (9).…”
Section: Conclusion and Further Workmentioning
confidence: 99%
See 1 more Smart Citation