Distribution feeder reconfiguration (DFR) is formulated as a multiobjective optimization problem which minimizes real power losses, deviation of the node voltages and the number of switching operations and also balances the loads on the feeders. In the proposed method, the distance (λ 2 norm) between the vectorvalued objective function and the worst-case vector-valued objective function in the feasible set is maximized. In the algorithm, the status of tie and sectionalizing switches are considered as the control variables. The proposed DFR problem is a non-differentiable optimization problem. Therefore, a new hybrid evolutionary algorithm based on combination of fuzzy adaptive particle swarm optimization (FAPSO) and ant colony optimization (ACO), called HFAPSO, is proposed to solve it. The performance of HFAPSO is evaluated and compared with other methods such as genetic algorithm (GA), ACO, the original PSO, Hybrid PSO and ACO (HPSO) considering different distribution test systems.