All-electric satellite systems and electric propulsion are becoming increasingly well-known technologies, because they help in reducing the propellant weight by a significant amount and enable the mounting of an increased mission payload. Unfortunately, the systems suffer from a much longer Geostationary transfer orbit (GTO) to Geostationary equatorial orbit (GEO) transfer time. This means there is more delay inimp service-in times. Since the transfer orbit is in the Van Allen radiation belt, it is advisable to shorten the transfer time. To resolve this problem, significant progress has already been made to optimize the orbit and attitude control. These solutions require complex orbits and attitude control; relatively little research has studied the attitude control method. In this paper, the concept of a simple attitude control method that achieves orbit-raising time optimization and has little design effect on the subsystem, except for on the electric propulsion subsystem, is reported.