Abstract:A continuous interest for an extensive use of sandwich structures in automotive, aerospace and civil infrastructure has been manifested in the last years due to the main advantage of lightweight and energy absorption ability. Based on characteristics of press molding process of honeycomb sandwich structure, a new kind of quasi-square honeycomb sandwich structure is proposed. Following classical unit cell theory and energy method, the mechanical equivalent model of the quasi-honeycomb sandwich structure is established and the corresponding equivalent elastic constant formula is deduced. Taking a sandwich panel in a satellite structure as an example, from the aspect of core characteristics, mechanical properties, equivalent elastic constants of honeycomb sandwich structure, and shear modulus, the differences between square honeycomb and quasi-square-honeycomb were analyzed and studied. The results show that both equivalent elastic modules are approximately equal, but the quasi-square-honeycomb sandwich structure is endowed with higher equivalent shear modulus and lower equivalent body density, thus the total structure mass can be effectively reduced. Simulation verifies the correctness of the proposed mechanical equivalent model of the quasi-square-honeycomb sandwich structure.